Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 55(1): 45, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407936

RESUMO

BACKGROUND: The breeding value of a crossbred individual can be expressed as the sum of the contributions from each of the contributing pure breeds. In theory, the breeding value should account for segregation between breeds, which results from the difference in the mean contribution of loci between breeds, which in turn is caused by differences in allele frequencies between breeds. However, with multiple generations of crossbreeding, how to account for breed segregation in genomic models that split the breeding value of crossbreds based on breed origin of alleles (BOA) is not known. Furthermore, local breed proportions (LBP) have been modelled based on BOA and is a concept related to breed segregation. The objectives of this study were to explore the theoretical background of the effect of LBP and how it relates to breed segregation and to investigate how to incorporate breed segregation (co)variance in genomic BOA models. RESULTS: We showed that LBP effects result from the difference in the mean contribution of loci between breeds in an additive genetic model, i.e. breed segregation effects. We found that the (co)variance structure for BS effects in genomic BOA models does not lead to relationship matrices that are positive semi-definite in all cases. However, by setting one breed as a reference breed, a valid (co)variance structure can be constructed by including LBP effects for all other breeds and assuming them to be correlated. We successfully estimated variance components for a genomic BOA model with LBP effects in a simulated example. CONCLUSIONS: Breed segregation effects and LBP effects are two alternative ways to account for the contribution of differences in the mean effects of loci between breeds. When the covariance between LBP effects across breeds is included in the model, a valid (co)variance structure for LBP effects can be constructed by setting one breed as reference breed and fitting an LBP effect for each of the other breeds.


Assuntos
Genômica , Modelos Genéticos , Genômica/métodos , Hibridização Genética , Frequência do Gene , Alelos
2.
J Dairy Sci ; 105(12): 9822-9836, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307242

RESUMO

For genomic prediction of crossbred animals, models that account for the breed origin of alleles (BOA) in marker genotypes can allow the effects of marker alleles to differ depending on their ancestral breed. Previous studies have shown that genomic estimated breeding values for crossbred cows can be calculated using the marker effects that are estimated in the contributing pure breeds and combined based on estimated BOA in the genotypes of the crossbred cows. In the presented study, we further exploit the BOA information for improving the prediction of genomic breeding values of crossbred dairy cows. We investigated 2 types of BOA-derived breed proportions: global breed proportions, defined as the proportion of marker alleles assigned to each breed across the whole genome; and local breed proportions (LBP), defined as the proportions of alleles on chromosome segments which were assigned to each breed. Further, we investigated 2 BOA-derived measures of heterozygosity for the prediction of total genetic value. First, global breed heterozygosity, defined as the proportion of marker loci that have alleles originating in 2 different breeds over the whole genome. Second, local breed heterozygosity (LBH), defined as proportions of marker loci on chromosome segments that had alleles originating in 2 different breeds. We estimated variance related to LBP and LBH on the remaining variation after accounting for prediction with solutions from the genomic evaluations of the pure breeds and validated alternative models for production traits in 5,214 Danish crossbred dairy cows. The estimated LBP variances were 0.9, 1.2, and 1.0% of phenotypic variance for milk, fat, and protein yield, respectively. We observed no clear LBH effect. Cross-validation showed that models with LBP effects had a numerically small but statistically significantly higher predictive ability than models only including global breed proportions. We observed similar improvement in accuracy by the model having an across crossbred residual additive genetic effect, accounting for the additive genetic variation that was not accounted for by the solutions from purebred. For genomic predictions of crossbred animals, estimated BOA can give useful information on breed proportions, both globally in the genome and locally in genome regions, and on breed heterozygosity.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Feminino , Bovinos/genética , Animais , Genômica , Alelos , Genótipo , Fenótipo
3.
J Dairy Sci ; 105(6): 5178-5191, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35465992

RESUMO

Genomic predictions have been applied for dairy cattle for more than a decade with great success, but genomic estimated breeding values (GEBV) are not widely available for crossbred dairy cows. The large reference populations already in place for genomic evaluations of many pure breeds makes it interesting to use the accurate solutions, in particular the estimated marker effects, from these evaluations for calculation of GEBV for crossbred heifers and cows. Effects of marker alleles in crossbred animals can depend on breed origin of the alleles (BOA). Therefore, our aim was to investigate if reliable GEBV for crossbred dairy cows can be obtained by combining estimated marker effects from purebred evaluations based on BOA. We used data on 5,467 Danish crossbred dairy cows with contributions from Holstein, Jersey, and Red Dairy Cattle breeds. We assessed BOA assignment on their genotypes and found that we could assign 99.3% of the alleles to a definite breed of origin. We compared GEBV for 2 traits, protein yield and interval between first and last insemination of cows, with 2 models that both combine estimated marker effects from the genomic evaluations of the pure breeds: a breed of origin model that accounts for BOA and a breed proportion model that only accounts for genomic breed proportions in the crossbred animals. We accounted for the difference in level between the purebred evaluations by including intercepts in the models based on phenotypic averages. The predictive ability for protein yield was significantly higher from the breed of origin model, 0.45 compared with 0.43 from the breed proportion model. Furthermore, for the breed proportion model, the GEBVs had level bias, which made comparison across groups with different breed composition skewed. We therefore concluded that reliable genomic predictions for crossbred dairy cows can be obtained by combining estimated marker effects from the genomic evaluations of purebreds using a model that accounts for BOA.


Assuntos
Genômica , Alelos , Animais , Bovinos/genética , Feminino , Genótipo , Fenótipo
4.
Genet Sel Evol ; 53(1): 84, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742238

RESUMO

BACKGROUND: In dairy cattle, genomic selection has been implemented successfully for purebred populations, but, to date, genomic estimated breeding values (GEBV) for crossbred cows are rarely available, although they are valuable for rotational crossbreeding schemes that are promoted as efficient strategies. An attractive approach to provide GEBV for crossbreds is to use estimated marker effects from the genetic evaluation of purebreds. The effects of each marker allele in crossbreds can depend on the breed of origin of the allele (BOA), thus applying marker effects based on BOA could result in more accurate GEBV than applying only proportional contribution of the purebreds. Application of BOA models in rotational crossbreeding requires methods for detecting BOA, but the existing methods have not been developed for rotational crossbreeding. Therefore, the aims of this study were to develop and test methods for detecting BOA in a rotational crossbreeding system, and to investigate methods for calculating GEBV for crossbred cows using estimated marker effects from purebreds. RESULTS: For detecting BOA in crossbred cows from rotational crossbreeding for which pedigree is recorded, we developed the AllOr method based on the comparison of haplotypes in overlapping windows. To calculate the GEBV of crossbred cows, two models were compared: a BOA model where marker effects estimated from purebreds are combined based on the detected BOA; and a breed proportion model where marker effects are combined based on estimated breed proportions. The methods were tested on simulated data that mimic the first four generations of rotational crossbreeding between Holstein, Jersey and Red Dairy Cattle. The AllOr method detected BOA correctly for 99.6% of the marker alleles across the four crossbred generations. The reliability of GEBV was higher with the BOA model than with the breed proportion model for the four generations of crossbreeding, with the largest difference observed in the first generation. CONCLUSIONS: In rotational crossbreeding for which pedigree is recorded, BOA can be accurately detected using the AllOr method. Combining marker effects estimated from purebreds to predict the breeding value of crossbreds based on BOA is a promising approach to provide GEBV for crossbred dairy cows.


Assuntos
Genômica , Hibridização Genética , Alelos , Animais , Bovinos/genética , Feminino , Linhagem , Reprodutibilidade dos Testes
5.
Mol Ecol Resour ; 17(5): 835-853, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28394451

RESUMO

Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.


Assuntos
Exoesqueleto , Restos Mortais , DNA Antigo/análise , Metagenômica/métodos , Moluscos/genética , Análise de Sequência de DNA , Animais , Organismos Aquáticos/genética , DNA/química , DNA/genética , DNA/isolamento & purificação , DNA Antigo/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Vibrio/genética
6.
Nat Commun ; 3: 899, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22692542

RESUMO

Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.


Assuntos
Clima , Regiões Árticas , Oceanos e Mares , Água do Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...